

Precision transducers for power and energy measurements

Hans Arne Frøystein Noordwijk, 22-23 March 2011 WP3: Precision Transducers For Laboratory Measurements of Power and Power Quality.

- Partners: BEV (Austria), CMI (Czech Republic), INRiM (Italy), JV (Norway), MIRS/SIQ (Slovenia), SP (Sweden), VSL (The Netherlands)
- Why (wideband) transducers?
- Requirements for novel voltage dividers and current shunts
- Work done

Why (wideband) transducers?

- The traceable measurement of electrical power and power quality signals should cover:
 - A broad range of voltages and currents
 - A broad frequency spectrum
 - Various waveforms, phase differences and discontinuities
- Digitizers/sampling measuring systems operate at limited moderate levels of voltage and current
- Transducers are necessary for scaling down the "raw" input signal to a level measurable by the measuring systems, with high precision

Specifications for the transducers

Deliverables	Ranges	Target specifications
3.1: Voltage dividers	10V @ 1 MHz to 1000 V @ 100 kHz	Voltage: 20 ppm, Phase: 200 µrad, @ 240 V and 100 kHz
3.2: Low current shunts	0.1A @ 1 MHz to 20 A @ 100 kHz	Current: 10 ppm, Phase: 100 µrad, @ 5 A and 100 kHz
3.3: High Current shunts	10A to 100 A @ 100 kHz	Current: 50 ppm, Phase: 500 µrad, @ 100 A and 100 kHz

Tasks performed

- Creation of an overview of the state of the art of transducers
- Development of testing facilities for temperature coefficients, power coefficients, phase response etc.
- Tests of available transducers performed, also with focus on DCparameters (temperature and power dependence), in addition to AC/DC and phase characterisation
- Modelling and design of new transducers
- Construction and testing of new transducers
- One more iteration: Modelling, design, construction
- Final tests, including in particular overlap of low-current and high current ranges (10 A to 20 A).

SP phase measuring system for voltage dividers

BEV current shunts

Nom.current	Nom.power	Actual value	TCR	Drift	PCR
[A]	[W]	[Ω]	$[\mu\Omega/\Omega/^{\circ}C]$	$[\mu\Omega/\Omega/yr]$	$[\mu \Omega / \Omega / W]$
10	9	0.0896	1.8	5.8	2.7
5	4.5	0.1792	1.3	7.7	2.6
3	2.7	0.3072	1.3	8.3	3.6
1	0.9	0.9036	-7.9	-42	
0.3	0.27	3.031	3.3	7.7	
0.1	0.09	10.002	0.6	11	
0.03	0.027	41.672	-8.8	5.8	

VSL DC tests of original JV shunts

JV Voltage divider

MIRS/SIQ current shunt

- Method: measurement of ratio of output voltages of the tested and the reference standard
- PC measured in current range of 50% - 100% of nominal current
- TC measured in temperature range from 18 °C up to 28(30) °C at 1/10 of nominal current
- More in poster presentation:
 - V. Novakova Zachovalova, M. Sira, J.Streit: "Measurement System for High Current Shunts DC Characterization at CMI"

- <u>Typical values for foil shunts:</u> PC < ± 4 ppm TC from -2.8 ppm to +8 ppm
- <u>Typical values for cage shunts:</u> PC < ± 4 ppm TC from -0.8 ppm to +4 ppm

Set up for TC measurement

Thank you